Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.291
Filtrar
1.
Nat Commun ; 15(1): 3490, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664429

RESUMEN

Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.


Asunto(s)
Caenorhabditis elegans , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN , Endonucleasas , Factor de Transcripción TFIIH , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Animales , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/metabolismo , Endonucleasas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Unión Proteica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mutación , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
2.
BMC Ecol Evol ; 24(1): 55, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38664688

RESUMEN

BACKGROUND: Sex differences in mitochondrial function have been reported in multiple tissue and cell types. Additionally, sex-variable responses to stressors including environmental pollutants and drugs that cause mitochondrial toxicity have been observed. The mechanisms that establish these differences are thought to include hormonal modulation, epigenetic regulation, double dosing of X-linked genes, and the maternal inheritance of mtDNA. Understanding the drivers of sex differences in mitochondrial function and being able to model them in vitro is important for identifying toxic compounds with sex-variable effects. Additionally, understanding how sex differences in mitochondrial function compare across species may permit insight into the drivers of these differences, which is important for basic biology research. This study explored whether Caenorhabditis elegans, a model organism commonly used to study stress biology and toxicology, exhibits sex differences in mitochondrial function and toxicant susceptibility. To assess sex differences in mitochondrial function, we utilized four male enriched populations (N2 wild-type male enriched, fog-2(q71), him-5(e1490), and him-8(e1498)). We performed whole worm respirometry and determined whole worm ATP levels and mtDNA copy number. To probe whether sex differences manifest only after stress and inform the growing use of C. elegans as a mitochondrial health and toxicologic model, we also assessed susceptibility to a classic mitochondrial toxicant, rotenone. RESULTS: We detected few to no large differences in mitochondrial function between C. elegans sexes. Though we saw no sex differences in vulnerability to rotenone, we did observe sex differences in the uptake of this lipophilic compound, which may be of interest to those utilizing C. elegans as a model organism for toxicologic studies. Additionally, we observed altered non-mitochondrial respiration in two him strains, which may be of interest to other researchers utilizing these strains. CONCLUSIONS: Basal mitochondrial parameters in male and hermaphrodite C. elegans are similar, at least at the whole-organism level, as is toxicity associated with a mitochondrial Complex I inhibitor, rotenone. Our data highlights the limitation of using C. elegans as a model to study sex-variable mitochondrial function and toxicological responses.


Asunto(s)
Caenorhabditis elegans , ADN Mitocondrial , Mitocondrias , Caracteres Sexuales , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Femenino , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588418

RESUMEN

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Unión a Telómeros , Animales , Proteínas de Unión a Telómeros/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dimerización , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Unión Proteica , Telómero/genética , Telómero/metabolismo , Complejo Shelterina , ADN/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas , Mamíferos/genética
4.
Aging (Albany NY) ; 16(7): 5829-5855, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613792

RESUMEN

Aging is characterized by declining health that results in decreased cellular resilience and neuromuscular function. The relationship between lifespan and health, and the influence of genetic background on that relationship, has important implications in the development of pharmacological anti-aging interventions. Here we assessed swimming performance as well as survival under thermal and oxidative stress across a nematode genetic diversity test panel to evaluate health effects for three compounds previously studied in the Caenorhabditis Intervention Testing Program and thought to promote longevity in different ways - NP1 (nitrophenyl piperazine-containing compound 1), propyl gallate, and resveratrol. Overall, we find the relationships among median lifespan, oxidative stress resistance, thermotolerance, and mobility vigor to be complex. We show that oxidative stress resistance and thermotolerance vary with compound intervention, genetic background, and age. The effects of tested compounds on swimming locomotion, in contrast, are largely species-specific. In this study, thermotolerance, but not oxidative stress or swimming ability, correlates with lifespan. Notably, some compounds exert strong impact on some health measures without an equally strong impact on lifespan. Our results demonstrate the importance of assessing health and lifespan across genetic backgrounds in the effort to identify reproducible anti-aging interventions, with data underscoring how personalized treatments might be required to optimize health benefits.


Asunto(s)
Caenorhabditis elegans , Longevidad , Estrés Oxidativo , Animales , Longevidad/efectos de los fármacos , Longevidad/genética , Estrés Oxidativo/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Resveratrol/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Antecedentes Genéticos , Natación , Piperazinas/farmacología , Estilbenos/farmacología
5.
Nat Commun ; 15(1): 3480, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658537

RESUMEN

The analysis of neural circuits has been revolutionized by optogenetic methods. Light-gated chloride-conducting anion channelrhodopsins (ACRs)-recently emerged as powerful neuron inhibitors. For cells or sub-neuronal compartments with high intracellular chloride concentrations, however, a chloride conductance can have instead an activating effect. The recently discovered light-gated, potassium-conducting, kalium channelrhodopsins (KCRs) might serve as an alternative in these situations, with potentially broad application. As yet, KCRs have not been shown to confer potent inhibitory effects in small genetically tractable animals. Here, we evaluated the utility of KCRs to suppress behavior and inhibit neural activity in Drosophila, Caenorhabditis elegans, and zebrafish. In direct comparisons with ACR1, a KCR1 variant with enhanced plasma-membrane trafficking displayed comparable potency, but with improved properties that include reduced toxicity and superior efficacy in putative high-chloride cells. This comparative analysis of behavioral inhibition between chloride- and potassium-selective silencing tools establishes KCRs as next-generation optogenetic inhibitors for in vivo circuit analysis in behaving animals.


Asunto(s)
Caenorhabditis elegans , Neuronas , Optogenética , Pez Cebra , Animales , Caenorhabditis elegans/genética , Neuronas/metabolismo , Neuronas/fisiología , Optogenética/métodos , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Humanos , Drosophila , Canales de Potasio/metabolismo , Canales de Potasio/genética , Cloruros/metabolismo , Animales Modificados Genéticamente , Conducta Animal , Células HEK293 , Drosophila melanogaster
6.
PLoS One ; 19(4): e0300276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557670

RESUMEN

Experimental evolution (EE) is a powerful research framework for gaining insights into many biological questions, including the evolution of reproductive systems. We designed a long-term and highly replicated EE project using the nematode C. elegans, with the main aim of investigating the impact of reproductive system on adaptation and diversification under environmental challenge. From the laboratory-adapted strain N2, we derived isogenic lines and introgressed the fog-2(q71) mutation, which changes the reproductive system from nearly exclusive selfing to obligatory outcrossing, independently into 3 of them. This way, we obtained 3 pairs of isogenic ancestral populations differing in reproductive system; from these, we derived replicate EE populations and let them evolve in either novel (increased temperature) or control conditions for over 100 generations. Subsequently, fitness of both EE and ancestral populations was assayed under the increased temperature conditions. Importantly, each population was assayed in 2-4 independent blocks, allowing us to gain insight into the reproducibility of fitness scores. We expected to find upward fitness divergence, compared to ancestors, in populations which had evolved in this treatment, particularly in the outcrossing ones due to the benefits of genetic shuffling. However, our data did not support these predictions. The first major finding was very strong effect of replicate block on populations' fitness scores. This indicates that despite standardization procedures, some important environmental effects were varying among blocks, and possibly compounded by epigenetic inheritance. Our second key finding was that patterns of EE populations' divergence from ancestors differed among the ancestral isolines, suggesting that research conclusions derived for any particular genetic background should never be generalized without sampling a wider set of backgrounds. Overall, our results support the calls to pay more attention to biological variability when designing studies and interpreting their results, and to avoid over-generalizations of outcomes obtained for specific genetic and/or environmental conditions.


Asunto(s)
Caenorhabditis elegans , Genitales , Animales , Caenorhabditis elegans/genética , Temperatura , Reproducibilidad de los Resultados , Antecedentes Genéticos , Evolución Biológica
7.
Elife ; 122024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564369

RESUMEN

Evolutionary transitions from egg laying (oviparity) to live birth (viviparity) are common across various taxa. Many species also exhibit genetic variation in egg-laying mode or display an intermediate mode with laid eggs containing embryos at various stages of development. Understanding the mechanistic basis and fitness consequences of such variation remains experimentally challenging. Here, we report highly variable intra-uterine egg retention across 316 Caenorhabditis elegans wild strains, some exhibiting strong retention, followed by internal hatching. We identify multiple evolutionary origins of such phenotypic extremes and pinpoint underlying candidate loci. Behavioral analysis and genetic manipulation indicates that this variation arises from genetic differences in the neuromodulatory architecture of the egg-laying circuitry. We provide experimental evidence that while strong egg retention can decrease maternal fitness due to in utero hatching, it may enhance offspring protection and confer a competitive advantage. Therefore, natural variation in C. elegans egg-laying behaviour can alter an apparent trade-off between different fitness components across generations. Our findings highlight underappreciated diversity in C. elegans egg-laying behavior and shed light on its fitness consequences. This behavioral variation offers a promising model to elucidate the molecular changes in a simple neural circuit underlying evolutionary shifts between alternative egg-laying modes in invertebrates.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Oviposición/genética , Oviparidad , Proteínas de Caenorhabditis elegans/genética , Evolución Biológica
8.
Nat Commun ; 15(1): 2861, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570505

RESUMEN

Tissue integrity is sensitive to temperature, tension, age, and is sustained throughout life by adaptive cell-autonomous or extrinsic mechanisms. Safeguarding the remarkably-complex architectures of neurons and glia ensures age-dependent integrity of functional circuits. Here, we report mechanisms sustaining the integrity of C. elegans CEPsh astrocyte-like glia. We combine large-scale genetics with manipulation of genes, cells, and their environment, quantitative imaging of cellular/ subcellular features, tissue material properties and extracellular matrix (ECM). We identify mutants with age-progressive, environment-dependent defects in glial architecture, consequent disruption of neuronal architecture, and abnormal aging. Functional loss of epithelial Hsp70/Hsc70-cochaperone BAG2 causes ECM disruption, altered tissue biomechanics, and hypersensitivity of glia to environmental temperature and mechanics. Glial-cell junctions ensure epithelia-ECM-CEPsh glia association. Modifying glial junctions or ECM mechanics safeguards glial integrity against disrupted BAG2-proteostasis. Overall, we present a finely-regulated interplay of proteostasis-ECM and cell junctions with conserved components that ensures age-progressive robustness of glial architecture.


Asunto(s)
Caenorhabditis elegans , Neuroglía , Animales , Caenorhabditis elegans/genética , Astrocitos , Fenómenos Biomecánicos , Proteostasis , Matriz Extracelular/metabolismo , Uniones Intercelulares
9.
Methods Mol Biol ; 2794: 321-330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630241

RESUMEN

Behavioral plasticity is subjected to various sensory stimuli, experiences, and physiological states, representing the temporal and spatial patterns of neural circuit dynamics. Elucidation of how genes and neural circuits in our brain actuate behavioral plasticity requires functional imaging during behavioral assays to manifest temporal and spatial neural regulation in behaviors. The exploration of the nervous systems of Caenorhabditis elegans has catalyzed substantial scientific advancements in elucidating the mechanistic link between circuit dynamics and behavioral plasticity. The analyses of the nervous system of C. elegans have technologically flourished owing to the development of optogenetic instruments and fluorescent protein-based imaging compatible with its optically transparent body and the understanding of its completely revealed neural connectome and gene expression profiles at single-neuron resolution (The C. elegans Neuronal Gene Expression Map & Network, CeNGEN project). Using examples of the two temperature learning behaviors in C. elegans, this chapter delves into a selection of pivotal imaging tools, including genetically encoded calcium indicators, biosensors for second messenger imaging, and their usage in freely moving worms that have propelled our grasp of sensory representation in C. elegans neural circuits. To further connect the circuit dynamics to behavioral plasticity, this chapter will focus on technological advancements enabling simultaneous imaging and tracking system together with methodologies to quantify multiple behavioral elements of freely behaving C. elegans in a dynamic environment.


Asunto(s)
Encéfalo , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Neuronas , Bioensayo , Mapeo Cromosómico
10.
Methods Mol Biol ; 2794: 313-319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630240

RESUMEN

This chapter aims to provide a comprehensive overview of the methodologies available to dissect genetic regulation of the nervous systems in the nematode Caenorhabditis elegans. These techniques encompass genetic screens and genetic tools to unravel the spatial-temporal contribution of genes on neural structure and function. Unbiased genetic screens on random mutations induced by ethyl methanesulfonate (EMS) or target gene silencing by genome-wide RNA interference (RNAi) help progress our understanding of the genetic control of neural development and functions. Complement to unbiased genetic approaches, gene- and protein-targeted manipulation by Cre/LoxP recombination system and auxin-inducible degron (AID) protein degradation system, respectively, helps identify tissues/cells and the time window critical for gene and protein function during the proper execution of a particular behavior. Considering the remarkable conservation of genetic pathways between C. elegans and mammalian systems, elucidating the genetic underpinnings of neural functions and learning behaviors in C. elegans may furnish invaluable insights into analogous processes in more complex organisms. As shown in the following chapter, leveraging these diverse methodologies enable researchers to elucidate the intricate network governing neural function and structure, laying the foundation for innovating strategies to ameliorate cognitive alterations.


Asunto(s)
Caenorhabditis elegans , Depresores del Sistema Nervioso Central , Animales , Caenorhabditis elegans/genética , Regulación de la Expresión Génica , Neurogénesis , Aprendizaje , Sistema Nervioso , Mamíferos
11.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612395

RESUMEN

Originally discovered in C. elegans, LIN28 is an evolutionarily conserved zinc finger RNA-binding protein (RBP) that post-transcriptionally regulates genes involved in developmental timing, stem cell programming, and oncogenesis. LIN28 acts via two distinct mechanisms. It blocks the biogenesis of the lethal-7 (let-7) microRNA (miRNA) family, and also directly binds messenger RNA (mRNA) targets, such as IGF-2 mRNA, and alters downstream splicing and translation events. This review focuses on the molecular mechanism of LIN28 repression of let-7 and current strategies to overcome this blockade for the purpose of cancer therapy. We highlight the value of the LIN28/let-7 pathway as a drug target, as multiple oncogenic proteins that the pathway regulates are considered undruggable due to their inaccessible cellular location and lack of cavities for small molecule binding.


Asunto(s)
MicroARNs , Animales , Caenorhabditis elegans/genética , Carcinogénesis , Transformación Celular Neoplásica , MicroARNs/genética , ARN Mensajero , Humanos
12.
Nat Commun ; 15(1): 3070, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594249

RESUMEN

Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms' ability to withstand oxidative stress.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Estrés Oxidativo/genética , Péptido 1 Similar al Glucagón/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
13.
J Cell Biol ; 223(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578284

RESUMEN

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular , Cinetocoros , Proteínas Asociadas a Microtúbulos , Proteínas Serina-Treonina Quinasas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Repeticiones de Tetratricopéptidos , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Nat Commun ; 15(1): 2085, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453905

RESUMEN

Chloride Intracellular Channel (CLIC) family members uniquely transition between soluble and membrane-associated conformations. Despite decades of extensive functional and structural studies, CLICs' function as ion channels remains debated, rendering our understanding of their physiological role incomplete. Here, we expose the function of CLIC5 as a fusogen. We demonstrate that purified CLIC5 directly interacts with the membrane and induces fusion, as reflected by increased liposomal diameter and lipid and content mixing between liposomes. Moreover, we show that this activity is facilitated by acidic pH, a known trigger for CLICs' transition to a membrane-associated conformation, and that increased exposure of the hydrophobic inter-domain interface is crucial for this process. Finally, mutation of a conserved hydrophobic interfacial residue diminishes the fusogenic activity of CLIC5 in vitro and impairs excretory canal extension in C. elegans in vivo. Together, our results unravel the long-sought physiological role of these enigmatic proteins.


Asunto(s)
Caenorhabditis elegans , Cloruros , Animales , Cloruros/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Canales de Cloruro/metabolismo , Liposomas
15.
PLoS Biol ; 22(3): e3002526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427703

RESUMEN

Live imaging of RNA molecules constitutes an invaluable means to track the dynamics of mRNAs, but live imaging in Caenorhabditis elegans has been difficult to achieve. Endogenous transcripts have been observed in nuclei, but endogenous mRNAs have not been detected in the cytoplasm, and functional mRNAs have not been generated. Here, we have adapted live imaging methods to visualize mRNA in embryonic cells. We have tagged endogenous transcripts with MS2 hairpins in the 3' untranslated region (UTR) and visualized them after adjusting MS2 Coat Protein (MCP) expression. A reduced number of these transcripts accumulates in the cytoplasm, leading to loss-of-function phenotypes. In addition, during epithelial morphogenesis, MS2-tagged mRNAs for dlg-1 fail to associate with the adherens junction, as observed for untagged, endogenous mRNAs. These defects are reversed by inactivating the nonsense-mediated decay pathway. RNA accumulates in the cytoplasm, mutant phenotypes are rescued, and dlg-1 RNA associates with the adherens junction. These data suggest that MS2 repeats can induce the degradation of endogenous RNAs and alter their cytoplasmic distribution. Although our focus is RNAs expressed in epithelial cells during morphogenesis, we find that this method can be applied to other cell types and stages.


Asunto(s)
Caenorhabditis elegans , ARN , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ARN/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Citosol/metabolismo
16.
J Cell Sci ; 137(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477340

RESUMEN

Axonal transport in neurons is essential for cargo movement between the cell body and synapses. Caenorhabditis elegans UNC-104 and its homolog KIF1A are kinesin-3 motors that anterogradely transport precursors of synaptic vesicles (pre-SVs) and are degraded at synapses. However, in C. elegans, touch neuron-specific knockdown of the E1 ubiquitin-activating enzyme, uba-1, leads to UNC-104 accumulation at neuronal ends and synapses. Here, we performed an RNAi screen and identified that depletion of fbxb-65, which encodes an F-box protein, leads to UNC-104 accumulation at neuronal distal ends, and alters UNC-104 net anterograde movement and levels of UNC-104 on cargo without changing synaptic UNC-104 levels. Split fluorescence reconstitution showed that UNC-104 and FBXB-65 interact throughout the neuron. Our theoretical model suggests that UNC-104 might exhibit cooperative cargo binding that is regulated by FBXB-65. FBXB-65 regulates an unidentified post-translational modification (PTM) of UNC-104 in a region beside the cargo-binding PH domain. Both fbxb-65 and UNC-104, independently of FBXB-65, regulate axonal pre-SV distribution, transport of pre-SVs at branch points and organismal lifespan. FBXB-65 regulates a PTM of UNC-104 and the number of motors on the cargo surface, which can fine-tune cargo transport to the synapse.


Asunto(s)
Transporte Axonal , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Cinesinas , Animales , Transporte Axonal/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/metabolismo , Cinesinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dominios Homólogos a Pleckstrina , Procesamiento Proteico-Postraduccional
17.
Commun Biol ; 7(1): 367, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532074

RESUMEN

Nutritional intake influences animal growth, reproductive capacity, and survival of animals. Under nutrition deficiency, animal developmental arrest occurs as an adaptive strategy to survive. However, the nutritional basis and the underlying nutrient sensing mechanism essential for animal regrowth after developmental arrest remain to be explored. In Caenorhabditis elegans, larvae undergo early developmental arrest are stress resistant, and they require certain nutrients to recover postembryonic development. Here, we investigated the developmental arrest in C. elegans feeding on Lactiplantibacillus plantarum, and the rescue of the diapause state with trace supplementation of Escherichia coli. We performed a genome-wide screen using 3983 individual gene deletion E. coli mutants and identified E. coli genes that are indispensable for C. elegans larval growth on originally not nutritionally sufficient bacteria L. plantarum. Among these crucial genes, we confirmed E. coli pdxH, and the downstream metabolite pyridoxal 5-P (PLP, Vitamin B6) as important nutritional factors for C. elegans postembryonic development. Transcriptome results suggest that bacterial pdxH affects host development by coordinating host metabolic processes and PLP binding. Additionally, the developmental arrest induced by the L. plantarum diet in worm does not depend on the activation of FoxO/DAF-16. Altogether, these results highlight the role of microbial metabolite PLP as a crucial cofactor to restore postembryonic development in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Vitamina B 6 , Escherichia coli/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Desarrollo Embrionario
18.
Sci Rep ; 14(1): 5401, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443452

RESUMEN

Temperature is a vital environmental factor affecting organisms' survival as they determine the mechanisms to tolerate rapid temperature changes. We demonstrate an experimental system for screening chemicals that affect cold tolerance in Caenorhabditis elegans. The anticancer drugs leptomycin B and camptothecin were among the 4000 chemicals that were screened as those affecting cold tolerance. Genes whose expression was affected by leptomycin B or camptothecin under cold stimuli were investigated by transcriptome analysis. Abnormal cold tolerance was detected in several mutants possessing genes that were rendered defective and whose expression altered after exposure to either leptomycin B or camptothecin. The genetic epistasis analysis revealed that leptomycin B or camptothecin may increase cold tolerance by affecting a pathway upstream of the insulin receptor DAF-2 that regulates cold tolerance in the intestine. Our experimental system combining drug and cold tolerance could be used for a comprehensive screening of genes that control cold tolerance at a low cost and in a short time period.


Asunto(s)
Antineoplásicos , Camptotecina , Animales , Camptotecina/farmacología , Caenorhabditis elegans/genética , Ácidos Grasos Insaturados
19.
Biophys J ; 123(8): 947-956, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38449311

RESUMEN

The ability to perceive temperature is crucial for most animals. It enables them to maintain their body temperature and swiftly react to noxiously cold or hot objects. Caenorhabditis elegans is a powerful genetic model for the study of thermosensation as its simple nervous system is well characterized and its transparent body is suited for in vivo functional imaging of neurons. The behavior triggered by experience-dependent thermosensation has been well studied in C. elegans under temperature-gradient environments. However, how C. elegans senses temperature via its nervous system is not well understood due to the limitations of currently available technologies. One major bottleneck is the difficulty in creating fast temperature changes, especially cold stimuli. Here, we developed a microfluidic-based platform that allowed the in vivo functional imaging of C. elegans responding to well-controlled temporally varying temperature stimulation by rapidly switching fluid streams at different temperatures. We used computational models to enable rational design and optimization of experimental conditions. We validated the design and utility of our system with studies of the functional role of thermosensory neurons. We showed that the responses of PVD polymodal nociceptor neurons observed in previous studies can be recapitulated. Further, we highlighted how this platform may be used to dissect neuronal circuits with an example of activity recording in PVC interneurons. Both of these neuron types show sensitization phenotypes. We envision that both the engineered system and the findings in this work will spur further studies of molecular and cellular mechanisms underlying cold-sensing through the nervous system.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Temperatura , Caenorhabditis elegans/genética , Microfluídica , Sensación Térmica/fisiología , Frío , Proteínas de Caenorhabditis elegans/genética
20.
Int Immunopharmacol ; 131: 111837, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38471365

RESUMEN

S-adenosylmethionine (SAM) was a methyl donor for modifying histones, which had crucial roles in lipid accumulation, tissue injury, and immune responses. SAM fluctuation might be linked to variations in histone methylation. However, the underlying molecular mechanisms of whether the SAM diet influenced the immune response via histone modification remained obscure. In this study, we utilized the Caenorhabditis elegans as a model to investigate the role of SAM diet in innate immunity. We found that 50 µM SAM increased resistance to Gram-negative pathogen Pseudomonas aeruginosa PA14 by reducing the bacterial burden in the intestine. Furthermore, through the genetic screening in C. elegans, we found that SAM functioned in germline to enhance innate immunity via an H3K4 methyltransferase complex to upregulate the immune response genes, including irg-1 and T24B8.5. Intriguingly, SAM also protected mice from P. aeruginosa PA14 infection by reducing the bacterial burden in lung. These findings provided insight into the mechanisms of molecular connections among SAM diet, histone modifications and innate immunity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Histonas , Animales , Ratones , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , S-Adenosilmetionina , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inmunidad Innata , Dieta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA